

Math 1 - Summer 2020 - June 25

Office Hours: Office hours will be held Wednesdays 5-6pm PT and Thursdays 2-3pm PT. Links will be posted on CCLE. I am also available by appointment, email me at victoriakala@ucla.edu.

Important Concepts

- Piecewise functions
- Composition of functions
- The **average rate of change** of a function f on the interval $[a, b]$ is

$$\frac{f(b) - f(a)}{b - a}$$

- The equation of a line with slope m and y-intercept $(0, b)$ is

$$y = mx + b$$

The equation of a line with slope m passing through the point (x_1, y_1) is

$$y - y_1 = m(x - x_1)$$

- If two lines are **parallel**, they have the same slope.

Important Concepts

- If two lines are **perpendicular**, then

$$m_2 = -\frac{1}{m_1}$$

where m_1, m_2 are the slopes of the lines.

- If $f(x)$ is a function, then

$$g(x) = af(b(x - h)) + k$$

is a **transformation** of f that is

1. Reflected vertically (about the x -axis) if $a < 0$
2. Stretched vertically by a factor of $|a|$ if $|a| > 1$, compressed if $|a| < 1$
3. Reflected horizontally (about the y -axis) if $b < 0$
4. Compressed horizontally by a factor of $|b|$ if $|b| > 1$, stretched if $|b| < 1$
5. Shifted right by h units if $h > 0$, left if $h < 0$
6. Shifted up k units if $k > 0$, down if $k < 0$

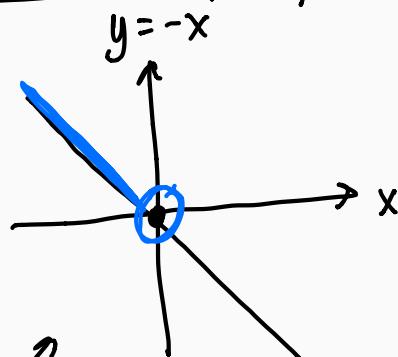
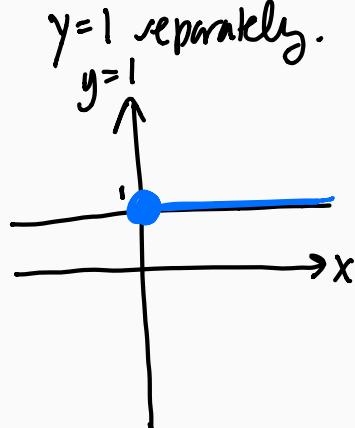
* left \rightarrow right
* outside : vertical
* inside : horizontal

Example 1. Sketch a graph of

$$f(x) = \begin{cases} -x, & x < 0 \\ 1, & x \geq 0 \end{cases}$$

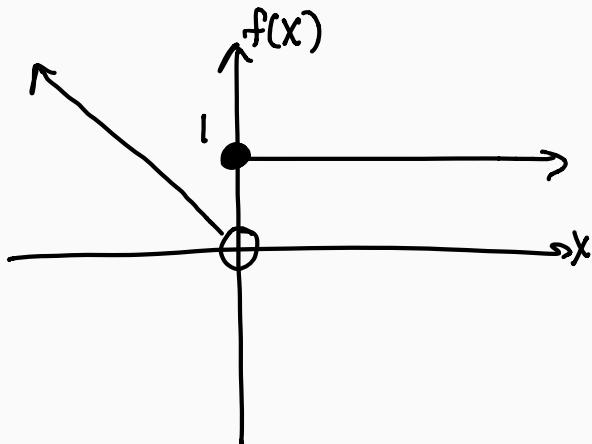
piecewise function

Step 1 Graph $y = -x$ and $y = 1$ separately.



ignore at beginning

Step 3 Put together



Step 2. Apply the domains

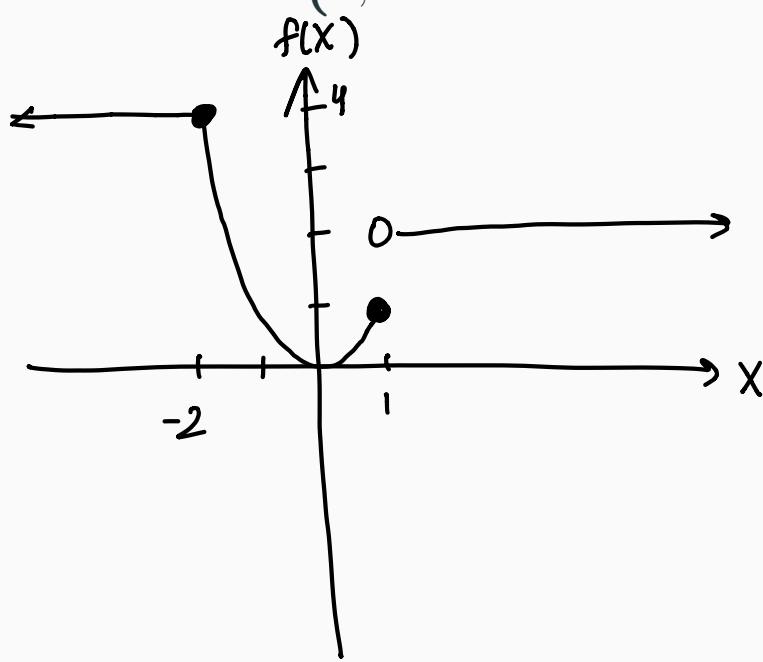
$x < 0$

$x \geq 0$

Example 2. Sketch a graph of

Try on your own for
a couple minutes

$$f(x) = \begin{cases} 4, & x < -2 \\ x^2, & -2 \leq x \leq 1 \\ 2, & x > 1 \end{cases}$$



Math 1 - Summer 2020 - June 25

Example 3. Let $f(x) = \frac{x}{x+1}$ and $g(x) = 2x - 1$. Evaluate the following:

(a) $f(g(4))$

mm inside \rightarrow out

composition

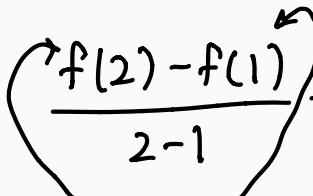
$$g(4) = 2(4) - 1 = 8 - 1 = 7$$
$$f(g(4)) = f(7) = \frac{7}{7+1} = \frac{7}{8}$$

(b) $g(f(1))$ try this one on your own

$$f(1) = \frac{1}{1+1} = \frac{1}{2}$$

$$g(f(1)) = g\left(\frac{1}{2}\right) = 2\left(\frac{1}{2}\right) - 1 = 1 - 1 = 0$$

Example 4. Find the average rate of change of $f(x) = x^2$ on the following intervals:

(a) $[1, 2]$ 

$$\frac{f(2) - f(1)}{2 - 1} = \frac{4 - 1}{2 - 1} = \frac{3}{1} = 3$$

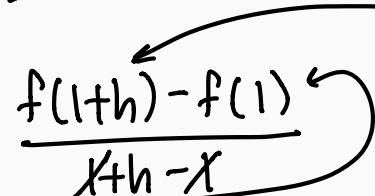
$f(2) = 2^2 = 4$

$f(1) = 1^2 = 1$

Avg. Rate of Change of f over interval $[a, b]$

$$\frac{f(b) - f(a)}{b - a}$$

Slope: $\frac{y_2 - y_1}{x_2 - x_1}$

(b) $\underbrace{[1, 1+h]}_{b}$ 

$$\frac{f(1+h) - f(1)}{1+h - 1} = \frac{f(1+h) - 1}{h}$$

$f(1+h) = (1+h)^2 = (1+h)(1+h) = 1+h+h+h^2 = 1+2h+h^2$

$$\frac{1+2h+h^2 - 1}{h} = \frac{2h+h^2}{h} = \frac{h(2+h)}{h} = 2+h$$

Math 1 - Summer 2020 - June 25

Example 5. A linear function $f(x)$ passes through the point $f(-2) = \underline{\underline{-1}}$ with a slope of $\frac{1}{3}$.

(a) Write the equation for $f(x)$.

$$m = \frac{1}{3} \quad \text{Slope}$$

$(-2, -1)$ point

$$x_1 \quad y_1$$

point-slope

$$y - (-1) = \frac{1}{3}(x - (-2))$$

$$y + 1 = \frac{1}{3}(x + 2)$$

$$y + 1 = \frac{1}{3}x + \frac{2}{3}$$

$$y = mx + b$$
$$y - y_1 = m(x - x_1)$$

$$y = \frac{1}{3}x + \frac{2}{3} - 1$$

$$f(x) = \frac{1}{3}x - \frac{1}{3}$$

(b) Write the equation of a line $g(x)$ that is perpendicular to $f(x)$ and passes through the point $(0, 2)$.

$(0, 2) \leftarrow$ y-int because $x = 0$

$$m = \frac{-1}{\frac{1}{3}} = -1 \cdot \frac{3}{1} = -3$$

$$m_2 = \frac{-1}{m_1}$$

$$y = -3x + 2$$

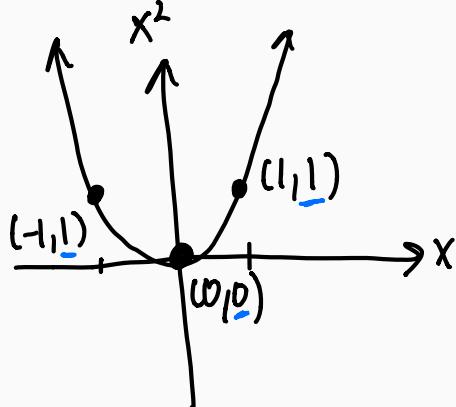
$$g(x) = -3x + 2$$

Example 6. Consider the function $g(x) = 3x^2 - 1$, which is a transformation of the function $f(x) = x^2$. left to right
 inside: $(3x)^2$ outside: $3 \cdot x^2$ inside: $(x-1)^2$ outside: $x^2 - 1$

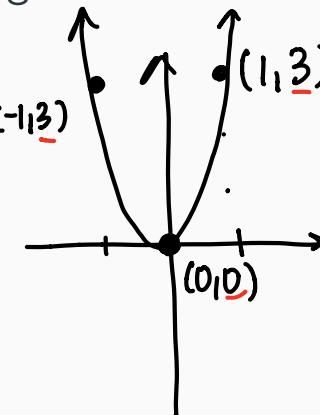
(a) Describe the transformations used to obtain $g(x)$ from $f(x)$.

- ① Vertical stretch by 3 (multiply y values by 3)
- ② Vertical shift down 1 unit (subtract 1 from y values)

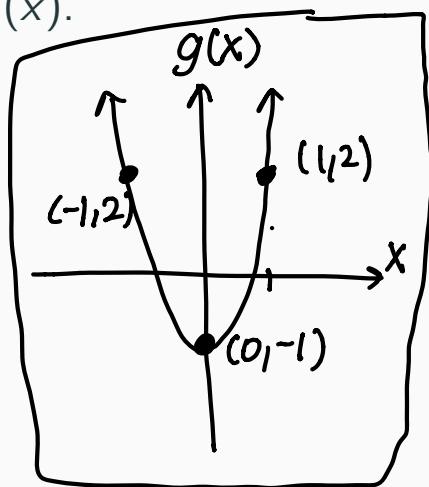
(b) Sketch a graph of $g(x)$ using transformations of $f(x)$.



①



②



Math 1 - Summer 2020 - June 25

Example 7. Consider the function $g(x) = -\sqrt{x+3}$, which is a transformation of the function $f(x) = \sqrt{x}$.

inside: $\sqrt{-1x}$ outside: $-1\sqrt{x}$

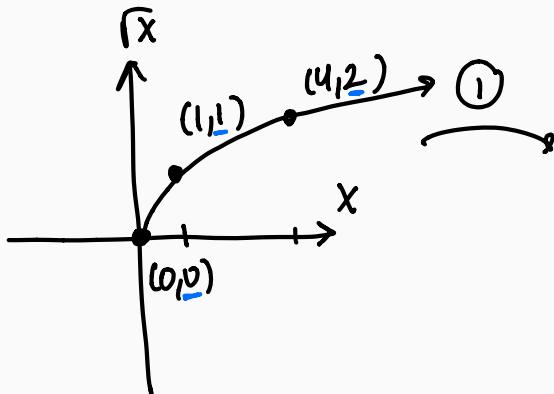
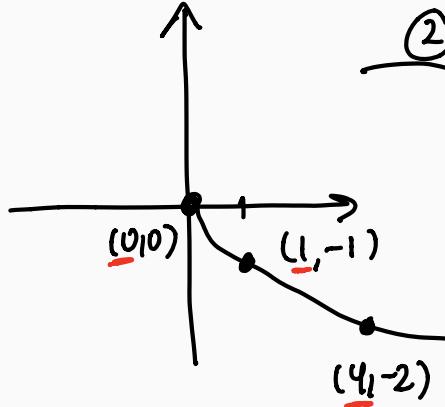
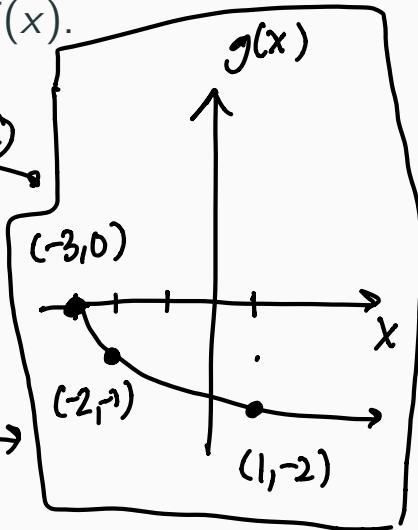
inside: $\sqrt{x+3}$ outside: $\sqrt{x}+3$

(a) Describe the transformations used to obtain $g(x)$ from $f(x)$.

① vertical reflection (multiply y values by -1)

② horizontal shift left 3 units (subtract 3 from x values)

(b) Sketch a graph of $g(x)$ using transformations of $f(x)$.



$$y = af(bx)$$

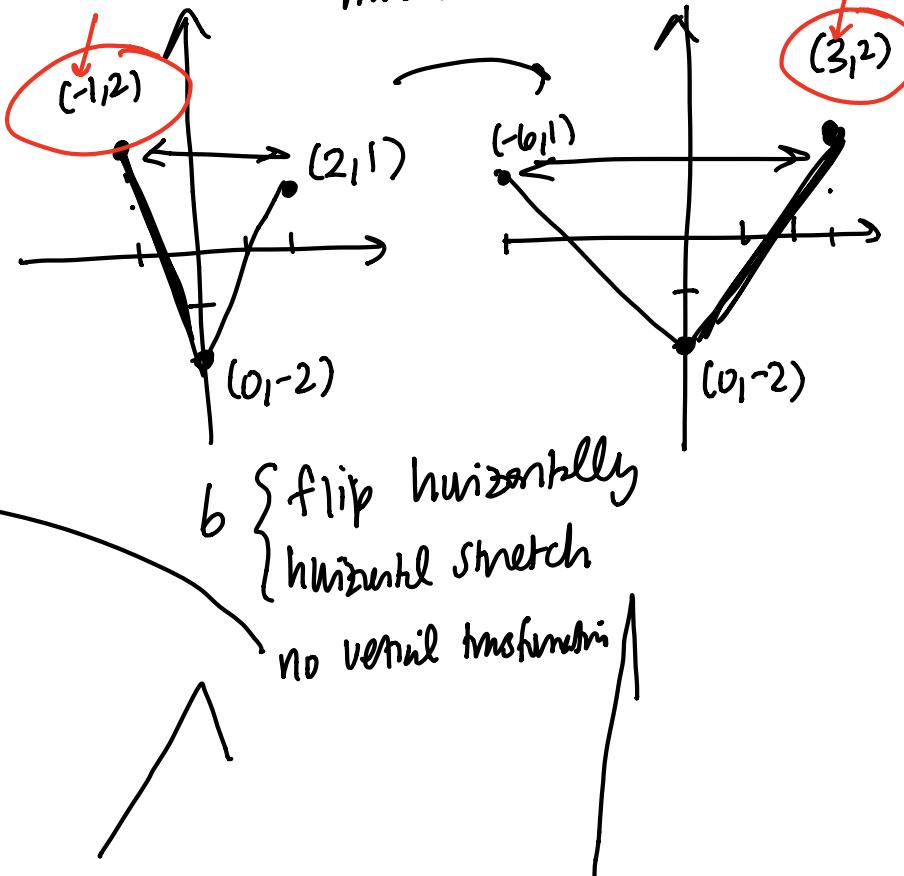
Vertical stretch / compression / reflection

horizontal compression / stretch / reflection

$$\begin{aligned} a &= 1 \\ b &= -\frac{1}{3} \end{aligned}$$

HW 1 #25

Multiplying x values by -3



Inverse Functions

if f is one-to-one

- (x, y) is on graph of $f(x)$ $\rightarrow (y, x)$ is a graph of $f^{-1}(x)$

e.g. $f(0) = 4$ what is $f^{-1}(4)$? $f^{-1}(4) = 0$

- ① replace $f(x) = y$
- ② swap y & x values
- ③ solve for y
- ④ replace y w/ $f^{-1}(x)$

e.g. find $f^{-1}(x)$ of $f(x) = x + 1$

$$\textcircled{1} \quad y = x + 1$$

$$\textcircled{2} \quad x = y + 1$$

$$\textcircled{3} \quad y = x - 1$$

$$\textcircled{4} \quad \boxed{f^{-1}(x) = x - 1}$$