

Important Concepts

- Linear equations
- Transformation of functions
- Identifying where a function is **increasing** / **decreasing** from a graph
- Identifying where a function is **concave up** / **concave down** from a graph
- Inverse Functions

Math 1 - Summer 2020 - June 30

Example 1. Which of the following tables could represent a linear function? For each that could be linear, find a linear equation that models the data.

$g(x)$ linear

$\downarrow x \text{ values}$ $\downarrow y \text{ values}$

$x \mid g(x)$

0	6	$\cancel{19-6}$	$\cancel{2-0}$	$\frac{-25}{2}$
2	-19	$\cancel{2-19}$	$\cancel{0-2}$	$\frac{-25}{2}$
4	-44	$\cancel{4-44}$	$\cancel{2-4}$	$\frac{-25}{2}$
6	-69	$\cancel{6-69}$	$\cancel{4-6}$	$\frac{-25}{2}$

slope: $\frac{y_2 - y_1}{x_2 - x_1}$

$h(x)$ linear

$x \mid h(x)$

2	13	$\cancel{23-13}$	$\cancel{4-2}$	$\frac{10}{2} = 5$
4	23	$\cancel{43-23}$	$\cancel{8-4}$	$\frac{20}{4} = 5$
8	43	$\cancel{53-43}$	$\cancel{10-8}$	$\frac{10}{2} = 5$
10	53			

Try these on your own

		linear
x	$f(x)$	
2	-4	$\cancel{1b+4} = \frac{20}{2} = 10$
4	16	$\cancel{3b-1b} = \frac{20}{2} = 10$
6	36	$\cancel{6-4} = \frac{20}{2} = 10$
8	56	$\cancel{5b-3b} = \frac{20}{2} = 10$

		Not linear
x	$k(x)$	
0	6	$\cancel{31-6} = \frac{25}{2} \neq 10$
2	31	$\cancel{1b6-31} = \frac{75}{4} \neq 10$
6	106	
8	231	

Math 1 - Summer 2020 - June 30

Example 1. Which of the following tables could represent a linear function? For each that could be linear, find a linear equation that models the data.

$$m = \frac{-25}{2}$$

$$y - 6 = \frac{-25}{2}(x - 0)$$

$$y - 6 = \frac{-25}{2}x$$

$$m = 5$$

$$y - 13 = 5(x - 2)$$

$$y - 13 = 5x - 10$$

$$y = 5x + 3$$

x	$g(x)$
0	6
2	-19
4	-44
6	-69

$$y = mx + b$$

$$y - y_1 = m(x - x_1)$$

$$y = -\frac{25}{2}x + b$$

$$g(x) = -\frac{25}{2}x + b$$

Find $h(x)$
and $f(x)$

x	$h(x)$
2	13
4	23
8	43
10	53

$$h(x) = 5x + 3$$

x	$f(x)$
2	-4
4	16
6	36
8	56

$$m = 10$$

$$y + 4 = 10(x - 2)$$

$$y + 4 = 10x - 20$$

$$y = 10x - 24$$

$$f(x) = 10x - 24$$

x	$k(x)$
0	6
2	31
6	106
8	231

Math 1 - Summer 2020 - June 30

Example 2. Match each graph with the corresponding line.

(a) $y = 2$

horizontal line
(A)

Try on your
own for a
couple minutes

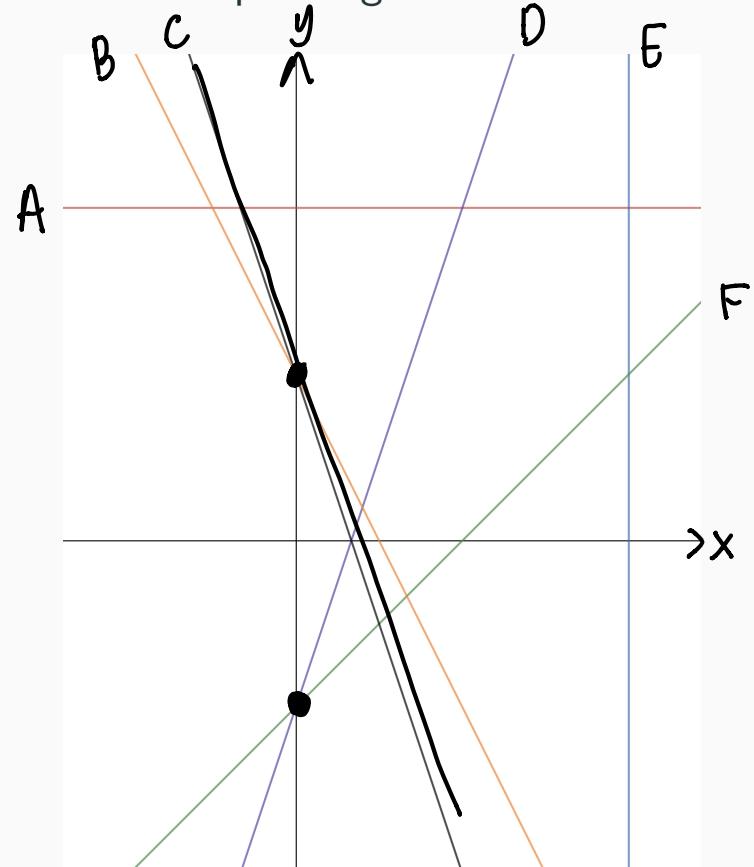
(b) $x = 2$

vertical line (E)

(c) $y = x - 1$

(F)

(d) $y = 3x - 1$


(D)

(e) $y = 1 - 3x$

(C)

(f) $y = 1 - 2x$

(B)

Math 1 - Summer 2020 - June 30

Example 3. Match each graph with the corresponding equation.

(a) $f(x) = \sqrt{x}$

(D)

My on your
own for a
couple minutes

(b) $g(x) = \sqrt{-x}$

horizontal reflection

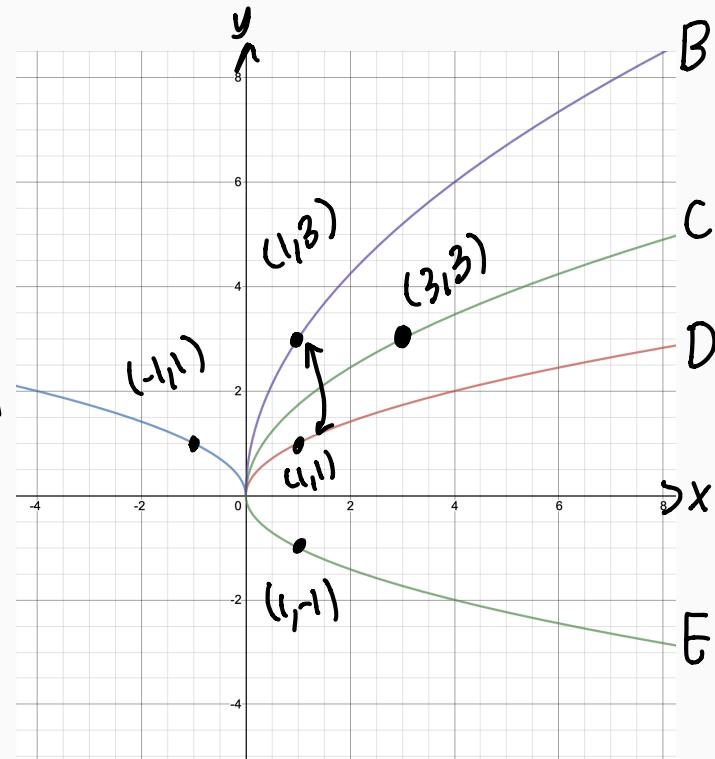
(A)

(c) $h(x) = -\sqrt{x}$

vertical reflection

(E)

(d) $j(x) = \sqrt{3x}$


horizontal compression by 3

(C)

(e) $k(x) = 3\sqrt{x}$

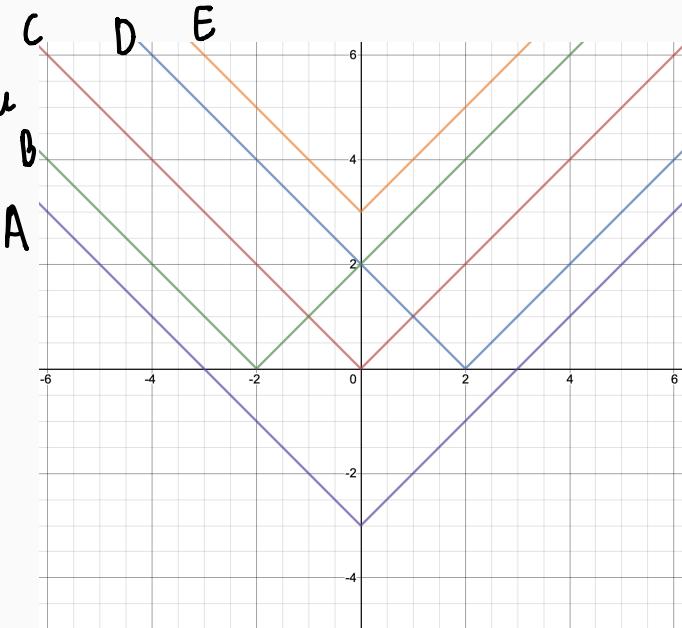
vertical stretch by 3

(B)

Math 1 - Summer 2020 - June 30

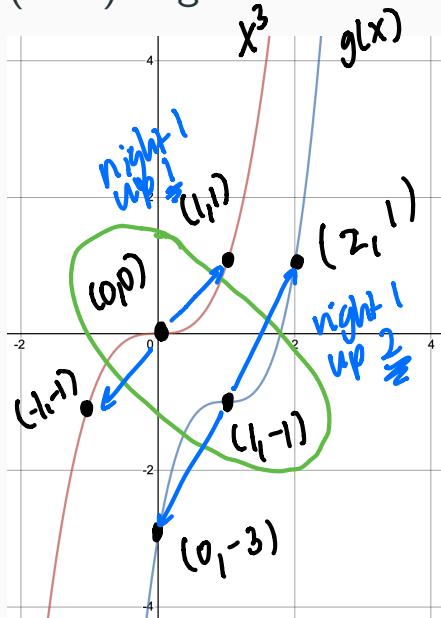
Example 4. Match each graph with the corresponding equation.

(a) $f(x) = |x|$ (C)


(b) $g(x) = |x - 2|$ right 2 (D)

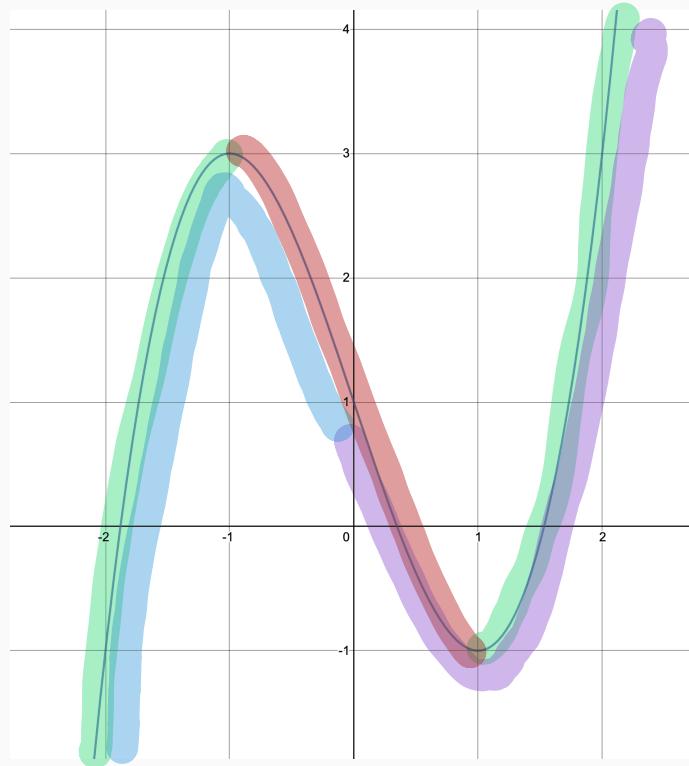
(c) $h(x) = |x + 2|$ left 2 (B)

(d) $j(x) = |x| + 3$ up 3 (E)


(e) $k(x) = |x| - 3$ down 3 (A)

My Mis
in your arm
for a couple
minutes

Math 1 - Summer 2020 - June 30


Example 5. The graph of $f(x) = \cancel{x^3}$ (red) and a transformation $g(x)$ (blue) is given in the image below. Find the equation of $g(x)$.

right 1 unit
down 1 unit
vertical stretch by 2 units

$$g(x) = 2(x - 1)^3 - 1$$

Example 6. The graph of a function is given below. Where is the function increasing? Where is the function decreasing? Where is the function concave up? Where is the function concave down? Use interval notation.

always use $(,)$

increasing: $(-\infty, -1) \cup (1, \infty)$
(positive "slope")

decreasing: $(-1, 1)$

concave up: $(0, \infty)$

concave down: $(-\infty, 0)$

Example 7. Let $f(x) = \frac{x+2}{2x+3}$.

- (a) What is $f(0)$?

- (b) What is $(f(0))^{-1}$?

- (c) Without finding $f^{-1}(x)$, what is $f^{-1}\left(\frac{2}{3}\right)$?

Example 8. Let $f(x) = \frac{x+2}{2x+3}$. Find $f^{-1}(x)$.